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Abstract
We analyse the possibility of nanoscale phase separation manifesting itself in
the formation of ferromagnetic (FM) polarons (FM droplets) in the general
situation of doped anisotropic three- and two-dimensional antiferromagnets.
In these cases, we calculate the shape of the most energetically favourable
droplets. We show that the binding energy and the volume of a FM droplet
in the three-dimensional (3D) case depend upon only two universal parameters
J̄ = (Jx + Jy + Jz)S2 and teff = (tx tytz)

1/3, where J̄ and teff are effective
antiferromagnetic (AFM) exchange and hopping integrals, respectively. In the
two-dimensional (2D) case these parameters have the form J̄ = (Jx + Jy)S2

and teff = (tx ty)
1/2. The most favourable shape of a ferromagnetic droplet

corresponds to an ellipse in the 2D case and to an ellipsoid in the 3D case.

1. Introduction

The problem of electronic phase separation with the formation of ferromagnetic (FM) or
paramagnetic (PM) spin polarons (magnetic droplets or ferrons) due to the self-trapping of
charge carriers in an antiferromagnetic (AFM) matrix has become very popular, especially in
studies of high-Tc superconductors and systems with the colossal magnetoresistance (such as
LaMnO3 manganites doped by Ca). For isotropic materials, the size and shape of FM droplets
was evaluated in several papers, starting with the seminal work of Nagaev [1] (for more details
see [2]). The characteristic size of a FM droplet turns out to be of the order of 15–20 Å and
its optimum shape in isotropic three-dimensional (3D) manganites is a spherical. Later on,
Kagan and Kugel [3] analysed the case of layered manganites (like(La, Ca)n+1MnnO3n+1)

and demonstrated that the droplets with the lowest energy have an ellipsoidal shape. The
FM droplets of cylindrical shape considered first by Nagaev [5] for this class of manganites
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correspond to a higher energy. Currently, the phase separation in anisotropic materials is also
being addressed in connection with low-dimensional organic compounds [6] and quasi-one-
dimensional magnets such as BaCoO3 [7, 8]. Magnetic polarons in doped one-dimensional
(1D) AFM magnetic chains were recently considered in [9–11]. In these papers, the possibility
of rather long-range magnetic distortions around the polaron was demonstrated.

Another possibility for a strongly anisotropic situation arises when we take into
account the interplay between the microscopic phase separation and charge ordering (stripe
formation), include Jahn–Teller-type effects (orbital degrees of freedom), or consider stable
crystallographic distortions. In these cases, the quasi-1D zig-zag or ladder structures are often
observed in the corresponding systems [12, 13].

In this paper we present calculations concerning the shape and size of FM droplets in
anisotropic two-dimensional (2D) or 3D cases when, generally speaking, the electron hopping
integrals tx , ty and tz along x , y and z directions, as well as the AFM exchange integrals Jx ,
Jy and Jz are different. We find that, by analogy with the situation in layered manganites [3],
the most favourable shape of a FM droplet is ellipsoidal. Moreover, the binding energy and the
effective volume of the droplet are expressed only in terms of universal averaged parameters
J̄ = (Jx + Jy+ Jz)S2 and teff = (tx tytz)

1/3. These results are interesting, in particular in relation
to the neutron scattering experiments, giving an indication of the existence of FM clusters with
different shapes in perovskite and layered manganites [14–16]. Additional evidence concerning
nanoscale inhomogeneities in layered manganites comes from scanning tunnelling microscopy
with atomic-scale resolution [17].

Our paper is organized as follows. First, we consider the purely 2D situation and find the
most favourable shape for a 2D ferron comparing the energies of elliptical and rectangular
droplets in the general anisotropic 2D case: tx �= ty and Jx �= Jy . We find that in two
dimensions the minimum energy corresponds to an elliptical shape. Then we include the third
dimension (Jz and tz) and compare the energies of the cylinder and ellipse in the case when
both of them have the optimum elliptical shape of the 2D cross-sections. We find again that the
minimum energy in the 3D case corresponds to an ellipsoidal shape for FM droplets. At the
end of the paper we provide some discussions and conclusions.

2. The shape of FM droplets in the anisotropic 2D case

Let us first consider the anisotropic 2D case. In this case, there are two different electron
hopping integrals, tx �= ty , and two different constants of the AFM exchange interaction,
Jx �= Jy . To some extent, this case has a lot of similarities with the two-leg ladder systems
rather popular nowadays (see, for example, [18] and references therein).

Throughout this paper, we consider the Kondo-lattice model with the Hamiltonian

Ĥ = JH

∑

i

Siσ i +
∑

〈i j〉α
JαSi S j +

∑

〈i j〉α
tαc†

i c j , (1)

where c†
i and ci are electron creation and annihilation operators at site i , α = {x, y} for a

square lattice in 2D, 〈i j〉α denote the neighbouring sites in the lattice along the α direction,
σ i = 1

2 c†
i σ ci is the spin of a conduction electron (σ is the Pauli matrix), Si is a local spin,

Jα are AFM exchange integrals, tα are the hopping integrals for conduction electrons and the
parameter JH corresponds to the Hund’s rule coupling between a local spin S and a spin of a
conduction electron.

We work in the double-exchange limit, which implies that JH � {tx , ty} � {Jx, Jy}. In
this case, the ground state of the system is unstable toward the nanoscale phase separation [1–3]
with the formation of FM polarons inside the AFM matrix. Let us now evaluate the total energy
of the phase-separated state for different shapes of ferrons possible in the 2D case.
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2.1. A rectangular ferron

Let us first consider a rectangular FM droplet (ferron) located at the square lattice with the
intersite distance a. Its characteristic sizes along the x- and y-axes are Lx and L y , respectively.
The dimensionless volume � of such a ferron can be defined as � = Lx L y/a2. The kinetic
energy of charge carriers (electrons or holes) within the FM droplet is

Ekin = −2tx n − 2tyn + ε0n, (2)

where n is the concentration of charge carriers and ε0 is a binding energy corresponding to the
first (the lowest) level in the rectangular potential well. The latter can be found by solving the
corresponding Schrödinger equation (see [3])

Ĥkin�(x, y) = ε0�(x, y), (3)

where

Ĥkin = −a2

(
tx

∂2

∂x2
+ ty

∂2

∂y2

)
. (4)

In the present paper, we consider a well-defined ferron (without an extended tail of magnetic
distortions). Such a situation is characteristic for almost all models of ferrons (see the
discussion in [4] and references therein); however, it was shown recently that ferrons with
more extended spin distortions can also exist [9, 10, 19], but this problem requires special
consideration. For ferron with sharp boundaries, the corresponding boundary conditions have
the form

�(x = Lx , y) = �(x, y = L y) = 0. (5)

Hence,

�(x, y) = sin
πx

Lx
sin

πy

L y
(6)

and

ε0 = tx

(
πa

Lx

)2

+ ty

(
πa

L y

)2

. (7)

Now, we can proceed to the evaluation of the potential energy given by the terms related
to the AFM exchange interaction. In the domains with ferromagnetic order (ferrons), the AFM
exchange leads to the positive contribution to the total energy

Epot1 = 2(Jx + Jy)S2n
Lx L y

a2
. (8)

For the AFM regions which are free of ferrons the corresponding contribution to the energy can
be written as

Epot2 = −2(Jx + Jy)S2

(
1 − n

Lx L y

a2

)
. (9)

Hence, the total potential energy yields

Epot = −2(Jx + Jy)S2 + 4(Jx + Jy)S2n
Lx L y

a2
. (10)

Note that since a lattice site interacts with the sites along all axes we always have the sum
of exchange integrals in the expressions for the magnetic energy. As a result, the total energy
related to the formation of FM droplets has the form

Etot = −2[txn + tyn + (Jx + Jy)S2]

+ n

[
tx

(
πa

Lx

)2

+ ty

(
πa

L y

)2]
+ 4(Jx + Jy)S2n

Lx L y

a2
. (11)
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The minimization of energy (11) with respect to Lx and L y gives

∂ Etot

∂Lx
= −2ntx

π2a2

L3
x

+ 4(Jx + Jy)nS2 L y

a2
= 0,

∂ Etot

∂L y
= −2nty

π2a2

L3
y

+ 4(Jx + Jy)nS2 Lx

a2
= 0.

(12)

A solution to equations (12) reads

txπ
2 = 2

L y L3
x

a4
(Jx + Jy)S2,

tyπ
2 = 2

Lx L3
y

a4
(Jx + Jy)S2.

(13)

Multiplying both equations (13) by each other, we find
(

L y Lx

a2

)4

= π4tx ty

4(Jx + Jy)2S4
. (14)

Now, introducing notation

teff = (tx ty)
1/2, J̄ = (Jx + Jy)S2, (15)

we find
(

L y Lx

a2

)4

= �4 = π4t2
eff

4 J̄ 2
.

Thus, the dimensionless volume (area) � of a 2D ferron can be written as

� = π√
2

(
teff

J̄

)1/2

. (16)

We get quite a remarkable relationship expressing the volume of a 2D ferron in terms of the
teff/ J̄ ratio.

The ratio of sizes for this rectangular ferron can be easily found from equations (12)

Lx

L y
=

√
tx

ty
. (17)

Note that this ratio is independent of exchange integrals Jx and Jy , since the magnetic energy
depends only on their sum.

Correspondingly, the minimized total energy (11) takes the form

Etot = −2(txn + tyn + J̄) + 4π
√

2n(teff J̄)1/2. (18)

Introducing the energy of a FM polaron by the relationship

Epol = Etot + 2(tx n + tyn + J̄), (19)

we get finally

Epol = 8n� J̄ = 4π
√

2n(teff J̄ )1/2. (20)

It is again worth noting that the energy of the FM polaron in 2D depends only upon the product
of teff and J̄ .
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2.2. An elliptical ferron

Now, we can consider the energy a two-dimensional FM polaron having the shape of an ellipse.
For the same characteristic sizes (principal axes) of the ferron, its volume in the case of an
ellipse is � = π Lx L y/a2. The corresponding kinetic energy is again given by equations (2)–
(4). To solve the Schrödinger equation in this geometry, we should transform an ellipse to a
circle. This could be done, for example, by dilatation along the y-axis: y = ỹ

√
ty/tx . Then,

we have

Ĥkin = −a2tx

(
∂2

∂x2
+ ∂2

∂ ỹ2

)
= −a2tx�R̃, (21)

where R̃2 = x2 + ỹ2 and �R̃ = ∂2

∂ R̃2 + 1
R̃

∂

∂ R̃
is the radial part of the Laplacian operator

in 2D. Thus, the ellipse x2/L2
x + y2/L2

y = 1 in the ‘old’ x, y coordinates transforms to the

x2 + ỹ2 = R̃2
max circle in the ‘new’ x, ỹ coordinates. From the equation for the circle in terms

of ‘new’ coordinates x, ỹ, it is clear that R̃max = Lx . Hence, we have

Lx = L y

√
tx

ty
= R̃max, (22)

and the ferron volume in the initial (‘old’) coordinates reads

� = π
Lx L y

a2
= π

L2
x

a2

√
ty

tx
. (23)

In this case, a solution to the Schrödinger equation (3) has the form � = J0(k R̃), where
J0 is the Bessel function of zeroth order. The boundary condition J0(k R̃max) = 0 yields
k R̃max = j0,1 = 2.404 ≈ 3π/4, where j0,1 is the first zero of function J0. This means that

ε0 = txa2k2 = tx

(
j0,1a

R̃max

)2

= tx

(
j0,1a

Lx

)2

. (24)

Then, we have

Etot = −2[txn + tyn + (Jx + Jy)S2] + Epol, (25)

where

Epol = n

(
j0,1a

Lx

)2

tx + 4(Jx + Jy)S2n
π L2

x

a2

√
ty

tx
. (26)

The minimization of polaron energy (26) with respect to Lx gives

∂ Epol

∂Lx
= −2ntx

j 2
0,1a2

L3
x

+ 8(Jx + Jy)S2n
π Lx

a2

√
ty

tx
= 0. (27)

Thus, we have (see equations (23) and (27))

�2 = π2 L4
x

a4

ty

tx
= π j 2

0,1tx

4(Jx + Jy)S2

√
ty

tx
. (28)

Introducing again teff and J̄ defined by equation (15), we find

� = j0,1
√

π

2

(
teff

J̄

)1/2

. (29)

So, the ferron volume is again expressed as a function of the universal ratio teff/ J̄ . Comparing
expressions (16) and (29) for the volumes of rectangular and elliptical ferrons, we find

�ellipse

�rectangle
= j0,1√

2π
� 0.96 < 1. (30)
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This means that the elliptical ferron is a more compact object (i.e. it has a smaller volume) in
comparison to the rectangular ferron. Accordingly, the energy of an elliptical magnetic polaron
can be written in the following form

Epol = 8n� J̄ = 4nj0,1
√

π(teff J̄ )1/2. (31)

We can see again that the ferron energy depends only upon the product of teff and J̄ . Finally,
we can compare the ferron energies for the cases of rectangular and elliptical shapes using
equations (20) and (31)

Eellipse
pol

E rectangle
pol

= j0,1√
2π

= �ellipse

�rectangle
� 0.96 < 1. (32)

We see that the ratio of energies turns out to be identical to the ratio of the volumes. Thus, an
elliptical shape for the ferron is more favourable in energy than a rectangular shape. First of all,
this is caused by the more compact structure of the elliptical ferron. Also, as emphasized in [3],
an elliptical ferron in 2D has a close similarity to the one-electron spectrum characteristic of
the empty square lattice: εp = p2

x/2mx + p2
y/2m y , where mx/2 = tx a2 and m y/2 = tya2.

Concluding this section, we can say that an elliptical shape is the shape most favourable in
energy for a FM droplet in doped anisotropic antiferromagnets with a 2D square lattice.

3. The shape of FM droplets in the anisotropic 3D case

Now we can include the third dimension (which means the inclusion of Jz and tz) and consider
the shape of a FM droplet in a doped anisotropic antiferromagnet with a 3D cubic lattice. Of
course (having in mind the results of the previous section), we have to consider FM droplets
with a 2D cross-section as being most favourable in energy. In other words, we consider 3D
droplets having the shape of an ellipse in the x, y plane. Then the problem effectively reduces
to the comparison of the energies and the volumes of a cylinder and of an ellipsoid both having

an elliptical cross-section with dimensions Lx = L y

√
tx
ty

(see equation (22)).

3.1. FM droplets of cylindrical shape

First, let us consider 3D FM droplets with a cylindrical shape. The volume of such a droplet
can be written as

� = π
Lx L y Lz

a3
= π

L2
x

a2

√
ty

tx

Lz

a
. (33)

In this case, the total energy has the form

Etot = −2[txn + tyn + tzn + (Jx + Jy + Jz)S2]

+ 4(Jx + Jy + Jz)S2�n + tx n

(
j0,1a

Lx

)2

+ tzn

(
πa

Lz

)2

. (34)

The polaron energy

Epol = Etot + 2[tx n + tyn + tzn + (Jx + Jy + Jz)S2] (35)

is given by the expression

Epol = tx n

(
j0,1a

Lx

)2

+ tzn

(
πa

Lz

)2

+ 4(Jx + Jy + Jz)S2nπ
L2

x

a2

√
ty

tx

Lz

a
. (36)
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The minimization of polaron energy (36) with respect to Lx and Lz yields

∂ Epol

∂Lx
= −2txn

j 2
0,1a2

L3
x

+ 8 J̄ nπ
Lx

a2

Lz

a

√
ty

tx
= 0,

∂ Epol

∂Lz
= −2tzn

π2a2

L3
x

+ 4 J̄ nπ
L2

x

a3

√
ty

tx
= 0,

(37)

where we introduced the effective exchange integral for the 3D case

J̄ = (Jx + Jy + Jz)S2. (38)

From equations (37), we get

j 2
0,1tx

4π J̄
= L4

x Lz

a5

√
ty

tx
,

π tz

2 J̄
= L2

x L3
z

a5

√
ty

tx
.

(39)

Squaring the second equation in (39) and dividing the result by the first equation, we
exclude Lx and obtain the following expression for Lz :

Lz = a

(
π3

j 2
0,1 J̄

t2
z√
tx ty

)1/5

. (40)

Substituting equation (40) into the first equation in (39), we get

j 2
0,1tx

4π J̄
= L4

x

a4

√
ty

tx

(
π3

j 2
0,1 J̄

t2
z√
tx ty

)1/5

. (41)

Hence, we have

Lx = a√
2

(
j 3
0,1

π2 J̄

t2
x√
ty tz

)1/5

. (42)

Using equations (40) and (42), we find the volume �cyl of the cylindrical ferron

�cyl = π
L2

x Lz

a3

√
ty

tx
= (π j0,1)

4/5

2

(
tx ty tz

J̄ 3

)1/5

. (43)

Introducing the effective hopping integral for the 3D case

teff = (tx ty tz)
1/3, (44)

we can rewrite equation (43) as

�cyl = (π j0,1)
4/5

2

(
teff

J̄

)3/5

. (45)

Similar to the 2D case, we see that the ferron volume in 3D is also a function of teff/ J̄ ratio,
where the effective parameters are given by equations (38) and (44).

Substituting expressions (40), (42), and (45) for Lz , Lx , and �cyl, respectively, into the
energy of a FM polaron (36), we get

Epol = 10n J̄� = 5n(π j0,1)
4/5(t3

eff J̄ 2)1/5. (46)

We see that the polaron energy in the 3D case again depends on the universal parameters teff and
J̄ , but the specific form of this dependence is slightly different: (t3

eff J̄ 2)1/5 in 3D as compared
to (teff J̄)1/2 in 2D.



10912 M Yu Kagan et al

3.2. FM droplets of ellipsoidal shape

Here, we calculate the volume and the energy of an FM droplet having an ellipsoidal shape.
The volume of the ellipsoidal droplet in the 3D case is

�ell = 4

3
π

Lx L y Lz

a3
. (47)

In this case, the total energy of the system has the form

Etot = −2[txn + tyn + tzn + (Jx + Jy + Jz)S2] + ε0n + 4(Jx + Jy + Jz)S2�n. (48)

Hence the energy of the ellipsoidal FM polaron can be written as

Epol = ε0n + 4 J̄�n, (49)

where we again introduce J̄ defined by equation (38).
As in the previous cases, the energy ε0 can be found by solving the corresponding

Schrödinger equation

Ĥkin�(x, y, z) = ε0�(x, y, z), (50)

where

Ĥkin = −a2

(
tx

∂2

∂x2
+ ty

∂2

∂y2
+ tz

∂2

∂z2

)
. (51)

Using the dilatation along the y- and z-axes: ỹ = y
√

ty/tx and z̃ = z
√

tz/tx , we get

Ĥkin = −tx a2�R̃ (52)

in the ‘new’ coordinates x , ỹ, and z̃. Here, we have R̃2 = x2 + ỹ2 + z̃2 and �R̃ = ∂2

∂ R̃2 + 2 1
R̃

∂

∂ R̃
is the radial part of the Laplacian operator in 3D.

In these coordinates, a droplet is confined within a sphere of the radius R̃max = Lx .
Accordingly, we have

L y

√
tx/ty = Lz

√
tx/tz = Lx = R̃max (53)

and the droplet volume expressed in terms of initial (‘old’) coordinates reads

�ell = 4

3
π

Lx L y Lz

a3
= 4

3
π

(
Lx

a

)3
(ty tz)

1/2

tx
. (54)

A solution to the Schrödinger equation (50) has the form

�(k R̃) = sin(k R̃)

(k R̃)
. (55)

The boundary condition �(k R̃max) = 0 yields k R̃max = π . Hence, we find

ε0 = txa2k2 = tx a2 π2

R̃2
max

= tx a2 π2

L2
x

(56)

and the energy of ellipsoidal FM polaron becomes

Epol = tx
π2a2

L2
x

n + 4 J̄ n
4

3
π

(
Lx

a

)3 √
tytz

tx
. (57)

The minimization of polaron energy (49) with respect to Lx yields

∂ Epol

∂Lx
= −2tx

π2a2

L3
x

n + 16 J̄πn

(
Lx

a

)2 1

a

√
ty tz

tx
= 0. (58)
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As a result, we get the expression for Lx

Lx = a

(
π

8

t2
x

J̄
√

ty tz

)1/5

. (59)

Substituting equation (59) to (54), we find the volume of an ellipsoidal droplet

�ell = π8/521/5

3

(
teff

J̄

)3/5

, (60)

where teff is again given by equation (44). We see that the volume of the ellipsoidal droplet
is also determined by the dimensionless universal ratio teff/ J̄ . Dividing equation (54) by
equation (45), we obtain the ratio of the volumes for ellipsoidal and cylindrical droplets

�ell

�cyl
= 4

3

(
π

2 j0,1

)4/5

� 0.95 < 1. (61)

We see that the ellipsoidal FM droplet is a more compact object (with a smaller volume) than
the cylindrical one.

Substituting expression (59) for Lx into the polaron energy (57), we find

Epol = 10n J̄�ell = 10n
π8/521/5

3
(t3

eff J̄ 2)1/5. (62)

Hence the ratio of the energies corresponding to two different shapes of ferrons is again
identically equal to the ratio of their volumes

Eell
pol

Ecyl
pol

= �ell

�cyl
= 4

3

(
π

2 j0,1

)4/5

� 0.95 < 1. (63)

Thus, in the 3D case, the ellipsoidal droplet has the lowest energy in agreement with the results
of [3].

4. Conclusions and discussion

We considered the formation and the shape of droplets in the most general cases of doped
anisotropic 2D and 3D antiferromagnets with arbitrary values of the electron hopping integrals
tα and the AFM exchange integrals Jα . We found that in the anisotropic 2D case (when
α = {x, y} and tx �= ty, Jx �= Jy), the most energetically favourable shape of FM droplets
is an ellipse. In the anisotropic 3D case (when α = {x, y, z} and we include into consideration
the third dimension with tz and Jz), the most energetically favourable shape of FM droplets
is an ellipsoid. Moreover, the binding energy and volume of FM droplets depend in both 2D
and 3D upon only two universal parameters teff and J̄ . In the 2D case these parameters are
teff = (tx ty)

1/2 and J̄ = (Jx + Jy)S2, whereas in the 3D case the corresponding expressions
have the form teff = (tx ty tz)

1/3 and J̄ = (Jx + Jy + Jz)S2.
Note that in the present paper we have considered only the case of ‘free’ ferrons, which

are not strongly localized at donor impurities. The study of strongly localized ferrons bound to
impurities, especially their shape and the form of the cloud of magnetic distortions related to
them (similar to those described in [10] and [19]) will be the subject of a separate publication.

Note also that the situation would be more complicated for FM droplets on frustrated
triangular or kagome lattices. This is a case, for example, in an interesting quasi-1D magnetic
material BaCoO3, where the chains of Co4+ ions form a triangular lattice [7, 8].
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